
J .  E’licid Mech. (1966), uol. 26, part 1, pp. 1-15 

Printed in Great Britain 
1 

The peeling of a flexible strip attached by 
a viscous adhesive 

By A. D. McEWAN A N D  G. I. TAYLOR 
Cavendish Laboratory, Cambridge 

(Received 26 November 1965) 

The peeling of a flexible strip from a rigid surface to which it is attached by a 
thin layer of adhesive is discussed, treating the adhesive as a Newtonian viscous 
fluid. This makes it possible to examine the flow and stress distributions ahead 
of the point where separation occurs. The conditions at  this point are taken to 
be the same as those observed in other cases where a stream of viscous fluid 
separates into two. In  particular, the effect of surface tension at the separating 
meniscus on the speed of peeling is predicted. 

Experiments are described in which a sheet of ‘Melanex ’ 4pm thick was laid on 
a sheet of fluid covering a piece of plate glass. The apparatus was designed to 
ensure that this was peeled off at  a constant angle, and the speed of the separa- 
tion meniscus, as well as the load on the sheet, was measured. The experimental 
results are analysed in the light of the theory and shown to be consistent with it. 

An interesting feature is the prediction that a t  low peeling speeds there is a 
great reduction in the thickness of the adhesive layer immediately ahead of the 
line of separation. Although the initial thickness of the layer dictates the scale 
of the shape adopted by the strip ahead of this line, it exerts no effect upon the 
relation between the external variables. 

It is noted that, when the adhesive layer remains intact ahead of separation, 
the physical appearance of commercially available tapes in slow peeling can 
resemble that of simple viscous adhesives. 

1. Introduction 
When a flexible sheet is peeled from a rigid surface to which it has been at- 

tached by a layer of adhesive, the stress within the adhesive resisting the peeling 
is confined to a region near to the line of separation or rupture. Such a situation 
commonly arises in the stripping of what are technically known as ‘pressure- 
sensitive ’ adhesive tapes. In  this application, numerous experimental studies 
have been made of peeling adhesion, but a satisfactory rationalization of the 
observed behaviour is impeded by the difficulty in taking full account of the 
complicated rheological properties which most good adhesives are known to 
possess. 

A simplification that has been the basis of several theoretical models is the 
assumption of purely Hookean elastic adhesive properties, with each connecting 
adhesive element acting independently of its neighbours and with failure occur- 
ring when a limiting stress condition is reached (e.g. Bikermann 1957; Kaelble 
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1960). With such a model, the strain energy in the adhesive when it fails ( W )  is 
related to its breaking strength and its elastic properties in such a way that W 
could be determined by appropriate experiments using other means than 
peeling a strip from a rigid surface. In  this model, the tension T needed to peel 
unit width of strip when applied at an angle 8 to the rigid surface is directly con- 
nected with W through the equation 

W = T(l-cos8), (1) 

so that T could be calculated using values of W determined independently. 
However, models assuming elastic deformation to failure cannot account for 

the observation that many adhesives peel at a rate which depends upon T. Then 
although (1) remains true it is of less value in relating T with 8. These quanti- 
ties might still be connected using approximations to the visco-elastic properties 
of the adhesive (e.g. Chang 1960) determined perhaps by simple tension-exten- 
sion-time experiments but it is questionable whether the distribution of stress, 
strain and rate of strain within much of the critical region would be same as 
that in a simple one-dimensional experiment. 

T 0  

X 

FIGURE 1. Peeling model. 

For some adhesives, the rate of propagation U of the separation region is 
nearly proportional to T over a considerable range of values of T. For such cases, 
(1) shows that W is proportional to U. This is characteristic of Newtonian vis- 
cosity. 

It is perhaps surprising that few theories of peeling have been proposed on the 
assumption that the adhesive possesses no elastic strength and is purely viscous. 
This neglect is probably due, in part, to the difficulty of defining suitable criteria 
for finding the position of the line of separation or rupture in an adhesive layer 
between diverging surfaces, if no specific ‘failure ’ condition can be given. 

Inthisnote,use ismadeofthesimilaritybetweentheseparationofaviscouslayer 
in the present context, and the previously studied cases in which a liquidlayer con- 
fined within a narrow space between rigid boundaries is forced to divide about an 
advancing free surface, to enable the rupture position to be defined and a full des- 
cription found. The model considered is a completely flexible sheet separated from 
a planerigid surface by aNewtonian liquid layer of viscosity ,u and initial thickness 
h,,. Reference is made to figure 1. The co-ordinate system is fixed with respect to 
the moving tear by imposing the propagation velocity U .  The motion is taken 
to be steady and two-dimensional. When the liquid separates, part of it adheres to 
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the surface and part to the sheet. The total amount per unit area adhering to both 
surfaces is equal to that far upstream of the separation point, but the amount of 
fluid occupying the diverging space immediately before the separating meniscus 
ill must depend upon how easily it is able to flow in the region of this space. 

We confine our attention to small peeling angles 0, for which the Reynolds 
approximations greatly simplify the analysis; furthermore, we assume that the 
Reynolds number pUho/,u is negligibly small in cases of practical interest. Then 
the depth of the fluid h at  position x will dcpend upon p, and the longitudinal 
pressure gradient dpldx is related to h by 

(h - ho) U = (h3/1Zp) dp/dx, ( 2 )  

p being the pressure excess over the atmospheric pressure. When the strip is 
inextensible but possesses no flexural rigidity, then, for small slopes, 

Td2hldx2 = -p. (3) 

Combining equation ( 2 )  and the derivative of equation (3), 

-(-) d Td2h =-12pqh3). h-ho 
ax ax2 

The x-wise variation in T is given approximately by 

TIT, (cosQ+h$) = 0,  

(4) 

where To is the tension at points where the local slope $ of the strip is zero, and 
internal pressure is - Td$/dx. Since q5 is always small, however, the tension T can 
be taken as constant, and, with new variables 5 = h/h,, 6 = xa-f/ho, cc = T/12,uU, 
equation (4) becomes 

which is valid when cc-ic' = tan$ is small. Primes denote differentiation with 
respect to <. 

The initial boundary condition for all solutions of interest in the present case 
is 5 -+ 1 as 6 + - 00, and in the vicinity of 6 = 1 the equation is approximated by 

For which the solution is 

5" = (1 - 5 x 3 ,  (6) 

5" = 1-& (7) 

6-1 = Ae-[+Beicsin(*436+~). (8) 

A must be taken as zero to ensure that as < -+ - 00 the fluid is stationary with re- 
spect to the bounding surfaces. Thus 

g f = 5 " = 4 B 4 3  as < + 1 .  (9) 

This provides a convenient starting-point for the numerical integration of equa- 
tion (6). For reasons explained later it is necessary to obtain a set of solutions 
represented by different values of B. Since (6-1) is periodic, with period 
47~143 = 7-26, solutions which start with a given value of B are repeated when 
B increases in ratio eZnq = 37.622 times. This provides a convenient check as to 
whether any particular choice of B is small enough to warrant the use of equa- 
tions (8) and (9) for initial values in the numerical solution of equation (6). 

1-2 
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1.1. Physical conditions at the meniscus 

The physical conditions at  the meniscus are unknown but there is no reason to sup- 
pose that they differ from those at the meniscus between rigid diverging surfaces. 
The case bearing the closest similarity to the present one would be that in which 
the rigid surfaces each travelled at  the same velocity with respect to the minimum 
gap position. Experiments have been performed by Pitts & Greiller (1961) in 
which two partly immersed rollers were driven in opposite directions of rotation. 
The liquid drawn through the narrow gap between the rollers formed a meniscus 
ahead of this gap, the position of which could be measured. Unfortunately, the 
data are of limited extent and it is necessary to consider the analogous case dealt 
with by Taylor (1963) of motion in which one surface is fixed and the other moves 
away from the meniscus. Such motion arises in a partly filled journal bearing. 
Taylor pointed out that two conditions must be fulfilled a t  the meniscus and that 
they both depend upon ,LLU/IT, where G is the surface tension. The conditions are: 
(i) that for determining the pressure drop? between the atmosphere and some 
point upstream of the meniscus in the liquid; and (ii) that which gives m, the 
ratio of the thickness of the layers of fluid adhering to the moving surface (sur- 
faces) to the width of the gap at  the meniscus. 

The experimental determination of these conditions as a function of ,uU/c~ 
is a matter of some difficulty. No measurements have yet been made of pressure 
drop across the meniscus (condition (i)), for either case. For the second condition, 
results were obtained in both the above-mentioned studies. However, a com- 
plication arises in the definition of m from these results. The value of m can be 
found simply by determining both the meniscus position (which defines h,, the 
width of the gap at the meniscus) and the amount of liquid adhering to the moving 
surfaces after passing the meniscus. This method was used by Pitts & Greiller 
in an attempt to find A = q/Uh,, a parameter defining the amount of liquid pass- 
ing through h,, the maximum gap width upstream of the meniscus. Here q is 
the volume flux per unit width, and U is the surface velocity. Since the deter- 
mination of q was insensitive they confine their published experimental results 
to measured values of h,/h,. h is a number which depends upon the geometry of 
the surfaces and the fluid conditions on both sides of the nip h,, but, if h could be 
defined, then m would be given as 

m = Ah,/&. (10) 

The value of A, when both sides of the nip are flooded, is +. If h, is substantially 
larger than h, the effect of the meniscus in altering the value of h should be small. 

Adopting this value for A, the results given in figure 3 of Pitts & Greiller’s 
paper, together with some extra data kindly supplied by Dr Pitts, were used to 
prepare figure 2. The results are seen to lie fairly close to the line m = 0*63(,uU/v)+ 
but the exponent of the curve of best fit seems to be slightlylower. Although there 
is no theoretical reason for supposing that the points asymptotically approach 

The quantity here described as ‘pressure drop’ and represented later by the symbol 
Sp in equation (13) is the difference between the pressure in the air outside the meniscus 
and the pressure which would exist according to Reynolds approximation if the flow had 
continued undisturbed up to  the position of the meniscus (see Taylor 1963). 
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a parabolic form for low ,u U / u ,  this form occurs in two other analogous situations, 
namely in the driving of a viscous liquid from a cylindrical tube by a long bubble? 
(Fairbrother & Stubbs 1935; Taylor 1961; and in the journal-bearing case of 
Taylor 1963). I n  each case the multiplicative factor is different, as might be 
expected from the different physical configurations. A second characteristic 
common to these analogous situations is that the value of m apparently ap- 
proaches asymptotically a value less than 1 as p U / a  becomes large (Taylor 1961 ; 
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FIGURE 2. m = 115 = F1(pU/a)  as a function of ,uU]a. 

Cox 1962; Taylor 1963) and, from the appearance of Pitts & Greiller's result,s 
on figure 2, such levelling off of m may also be occurring in their experiments 
using two rollers. There is no direct experimental evidence which would 
enable us to give an exact value for m,, the asymptotic limit of m, and for the 
analysis it was assumed to be 0.4. Subsequent experimental results, given later, 
confirmed that this assumption was reasonably accurate. 

1.2. Application of meniscus conditions to the peeling-strip solution 

Details of the solutions of equation (6) describing the gap width as a function of 
position are given in the next subsection. It is useful to consider first what in- 
formation is required from these solutions. 

Far upstream of the meniscus, the liquid film is undisturbed and is stationar- 
with respect to the plane and the strip, occupying a gap of width h,. For this 
case therefore, h = 1 and m is simply 

m = h,/h, = (11) 

m = 2i1(pU/cr). (12) 

I n  this case we assume that with small peeling angles 

t Bretherton (1961) theoretically predicts a (pU/a)$ relationship at very low driving 
speeds, but his experimental results are inclined to suggest a somewhat lower exponent. 



6 A .  D .  McEwan and G. I .  Taylor 

In  the complete absence of data on the pressure drop through the meniscus one 
can only speculate upon its probable magnitude, but dimensional analysis 
suggests that its form is 

-Sp =EF2rz). h0 5 (13) 

When p U / a  is very small, surface tension will dominate and the pressure drop 
will be approximately 

- 8P = 2al(ho 51, 
so that F2(,uUla) = W ( P U ) .  (14) 

For p U / a  large, the shape of the meniscus approaches one defined by viscous 
stress alone and dimensional arguments suggest that 

- SP = C,uU/hoC, 

where C is a constant, almost certainly positive and probably less than 1.0. 
Thus, when ,u Ulais large, the change in pressure across the meniscus is of the same 
order as that occurring over an x-wise distance of ha. 

Immediately ahead of the meniscus the pressure condition, using equation (3) 
and the terms defined before equation (6), is 

a-%T/ho = -8p, (15) 

or 6" = &&F1F2. (16) 

[c]s=m = a+tan8. (17) 

Since the slope of the strip does not change after the meniscus, 

Thus, the end boundary conditions describing the shape of the strip rely upon a 
knowledge of Fl and F2. For Fl, the solid line of figure 2 is taken, but for F2 
equation (14) can only be justifiably adopted for low values of,uU/a. 

From equations ( l l ) ,  (16) and (17) the solution of equation (6) is related to the 
externally measurable quantities in a peeling experiment, namely p U / a ,  a 
and 8. Solutions of the equation must therefore yield the functional relationship 
between 5, dC/;ldf: and d2</df:2. The value o f t  is immaterial. 

1.3. Solutions of equation (6) and their conversion to a usable form 

Equation (6) was solved by numerical integration using the Cambridge University 
Mathematical Laboratory's ' Edsac I1 ' digital computer. A Runge-Kutta 
method was adopted, and the interval of integration was made variable depend- 
ing upon the value d2[/df:2 in order that accuracy could be retained when quanti- 
ties were varying rapidly. A test of accuracy could be obtained by performing the 
integration with various basic step sizes. 

Integration was commenced from 5 = 1 with c' and 5" equal according to 
equation (9) and with values of B between 8.66 x and 2.60 x lop3 chosen from 
trial solutions performed by Dr R. Herczynsky, to cover adequately the resultant 
range of variables. Some representative results are presented in figure 3. The 
pattern of results repeats itself in f: with a period of 4n/ J3. Integration was com- 
menced from f: = 0,  but for all initial values of gl and 5" covered by the calcula- 
tions the variation in 6 is insignificant before f: = 6. It will be seen that for all 
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initial values &' undergoes one or two cycles of oscillation of rapidly increasing 
amplitude before depearting monotonically from the E-axis. The number of 
cycles of oscillation before departure is fixed by the initial values of 6' and C", 
but it can be demonstrated that all solutions must finally approach infinity. 

" 
6 8 10 12 14 16 18 20 22 24 26 28 

5 
FIGURE 3. Dimensionless form of peeling strip. 

10 

1 

0.3 
001 0.1 

6-1 = m 

FIGURE 4. 5' and 5" vs. l/<. 
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There seems to be no analytical way of finding the initial conditions for mono- 
tonic departure in a given cycle. This occurs in the nth cycle, where n is the least 
integer for which B > (37.622)-nB,, and B,, determined from computer solutions 
of ( 6 ) ,  lies between 2.365 x 10-4 and 2.375 x Below the latter value, 6 
will execute a further half cycle before departure, and in this case the minimum 
value of 6 after this half cycle varies inversely with its amplitude, and the gradi- 
ent of departure is subsequently steeper. Figure 4 plots 5' and 5" as a function of 
5 for those parts of the curves of figure 3 which exhibit positive values of these 
derivatives. The abscissa is written, for convenience, <-l, which by equation (1 1) 
corresponds to m. 

From figure 4 tt plot of 5' against 6" can be made for constant values of m. 
Now, by equation (16), 5" is given as a function of PIP2 for constant values of a. 

Appropriate Selected 
m PUlF  P U P  
0- 3 0.249 10-2 

10-3 
10-4 
10-5 

10-7 
1 0 - 6  

Corresponding 

TABLE 1 

Y 
0.0992 
0.0459 
0.0214 
0.00992 
0.00460 
0.00212 

5' e o  

1.075 28.0 
0.969 14.0 
0.917 5.58 
0.892 2-53 
0.880 1-157 
0.874 0.532 

FIGURE 5. p U / T  as a function of 8 ;  theory and experiment. The flags on symbols represent 
the comparison between theory and experiment. The line a t  the base of the flag marks the 
m curve upon which the point shoiild lie if figure 2 were correct. For points without flags 
the curve coincides to within the symbol radius. 0 ,  Ethyl alcohol; A, castor oil; 0, 
Limea Oil. 
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Since Fl and F2 have been taken as functionally related to pU/cr with values given 
by figure 2 and equation (14), respectively, 5" can be expressed in terms of m, 
p U/cr and a: 6" = m(pU/cr) (~ /6a :$  pU, 

which enables m, a: and 8 to be related. As a typical calculation, take m = 0.3, 
Then, by 

equation (18), therequiredvalue of 5" is 0.0992. From the plot of g' against 5" this 
corresponds to 6' = 1.075, and by equation (17) 8 = 28.0". Table 1 gives a set of 
such calculations. 

This method, with more intermediate values o f p U / T ,  was used to plot figure 5.  
Also plotted on figure 5 are the experimental results, which are discussed in Q 3. 

(18) 

= 3.333 and, from figure 2, pUla  = 0.249. Try &a = p U / T  = 

2. Experiments 
A systematic control of at  least one of the relevant parameters, 8, p U / c  or 

TIpU was desirable for data correlation, but in fact could not be achieved easily in 
an experiment. A thin flexible sheet peeling at a small angle from a plane surface 

FIGURE 6. Experimental arrangement. 

appears to be torsionally unstable when the peeling rate is a function of the 
applied force. Hence some form of lateral constraint was necessary. Furthermore, 
in order to avoid the conflicting limitations introduced by gravitational force 
and sheet stiffness, the plane surface had to be nearly horizontal. 

The arrangement adopted, described below and sketched in figure 6, controlled 
none of the above variables directly, but permitted wide variations in them to be 
produced with ease, and enabled a steady state to be maintained for the major 
part of each test. It comprised a horizontal plate-glass surface (a)  over which was 
laid a thin transparent plastic sheet, 30 cm in width and over 100 em long (b).? 
A film of liquid (c) was sandwiched between the sheet and the glass surface. The 
sheet, of 'Melanex', approximately 4 pm thick, was clamped at  one end to the 

t For some tests at low peeling angles, a sheet 10.1 em wide and 25 ,urn thick was used. 
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glass surface, and at  the other end passed over a freely moving roller ( d )  the axis of 
which was parallel to the glass surface. The sheet at this end had attached along 
its edge a rigid metal strip, from which were suspended weights in a scale pan ( e ) .  
The roller could be raised vertically at  a constant pre-set rate by screws at  the axle 
trunnion (f) driven by an infinitely variable speed drive. The rate of raising of the 
roller and the weight in the scale pan dictated the rate of peeling of the sheet 
from the glass, and the peeling angle. The peeling velocity and angle remained 
virtually constant for each run, except for the short starting period affected 
by inertia and the formation of a steady meniscus. A camera recorded time, 
meniscus position, and the counter which measured roller elevation. 

Although precise control of liquid-film thickness was not theoretically neces- 
sary, the computation of corrections to the measured quantities required that 
it be known. Accordingly, films of uniform thickness were formed by use of a 
height-adjustable roller, manually operated, which was passed over the sheet as 
the liquid was being laid for each experimental run. For most tests the film 
was made 0.0025 cm thick, but variations in film thickness exerted no systematic 
effect upon the results. 

Three liquids were used to form the adhesive layer; these were ethyl alcohol, 
castor oil, and a heavy lubricating oil, Shell ‘Limea 81 ’. The viscosity of each 
of the oils was determined over arange of temperature by the falling-ball method, 
with appropriate corrections, and surface tension was found by the pendant drop 
method with Fordham’s (1948) calculations, and by capillarity in a small tube. 
Alcohol properties were taken from physical tables. The range of properties so 
determined is listed below in table 2. 

p poise u dyne/cni 

Ethyl alcohol 0.0 1 12-0.0 126 21.6-22.7 
Castor oil 7.8 -9.2 354-35.9 
Limea 81 Oil 76.0 -100 33.6-36.0 

TABLE 2 

The experimental technique for all measurements was the same. The layer was 
rolled to the required thickness with the raising roller d at its lowest position. 
The requisite weights were placed in the scale pan and the variable-speed drive 
wits pre-set at  a chosen speed. A clutch was then engaged which simultaneously 
commenced to raise the roller d and to turn the counter. Sufficient photographs 
(between 3 and 6) were taken during the course of one run to provide at  least 
t,wo reducible results. Within each series of runs the drive speed was held more 
or less constant while the tension of the sheet was raised from run to run. The 
only parameter not directly determinable from the recorded results was 8, 
the peeling angle; this could be calculated approximately by trigonometry, but 
errors due to the weight of the liquid-laden strip and (in the tests a t  low ,uUlc~ 
and low 0) the thickness of the separating meniscus caused 0 to be consistently 
underestimated. This first error could be accounted for by the correction 

A8 = - wL/2T, 
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in which w is the loading per unit area on the strip and L is the peeled length. 
For the second error use is made of the observation that the height h is limited by 
gravity independently of pU/o .  For small peeling angles this height is 

hlim = (4T/~g) '  

(where p is the liquid density), which for alcohol is 0.335 cm. Below this height 
the meniscus rises to holm, being 0,0025 cm in most tests. As argued by Taylor 
(1963), gravity is unlikely to affect the value of m materially, but, to correct 
0, h0km or hlim, whichever was the smaller, was subtracted from the recorded 
roller height. 

3. Results and discussion 
All the experimental results are plotted on figure 5, and are compared with their 

theoretical location. On this figure each experimental result is represented by its 
appropriate symbol, and the difference between its value, and the value of m 
it should possess as given by figure 2, is shown as a flag. Each flag terminates on 
a short line which represents the line of constant m to which it belongs. It is not 
possible to locate the point on this line because the source of the discrepancy could 
lie in any one of the three variables. 

Symbols on figure 5 which have no flags are those for which t,he theoretical 
m-line coincides with the experimental points to within the radius of the symbol. 

The number of symbols not possessing flags represents a large proportion of 
the total number of experiments, but before remarking on the quality of the 
agreement between theory and experiment it is desirable to see what a plot of 
this nature signifies. 

When m is small, c is large, and the solutions of equation (6) corresponding 
to this large care of the 'non-returning' variety. These solutions are characterized 
by a value of 6" which is nearly independent of 6, so that the shape adopted by the 
peeling strip is parabolic: 6 = + c o x 2 + C 1 X + C 2 ,  

from which cy = g~2+coc2-+c; .  

If the quadratic is a satisfactory fit to the exact solution above c = el, then 
(6- el)[; = +(c2- ciz) for anygreatervalue of 6. Therefore, the solutions asymp- 
tote to 

In this case, by equations (1  I ) ,  (12), (16) and (17), the motion becomes indepen- 

tan26' = 4cr/T, 
dent of p U ,  and 

= *p. (19) 

or for small peeling angles tan2@3 = o/T. 

But this equation is the same as that for the static balance between cr and T.  
This implies that, at low values of ,uU/r ,  all experimental points will correspond 
to the theoretical lines regardless of the value of ,uU. The function for m assumed 
in figure 2 could be very much in error, but its influence upon the relationship 
between T and 6' would be small. 
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It is noted that the disagreement between experiment and theory becomes 
more marked as m and 19 increases. Discrepancies at high 6 are to be expected 
because of the approximations contained in the analysis, but for those results 
below 6 = lo", say, the disagreement probably arises largely from the inaccuracy 
of the assumed forms of Fl and F2. 

0.5 0.6 07 0 8  0.9 1.0 1.5 2 

5' 
FIGUBE 7 .  Datermination of rn from expcrirnent. 

With the computed solutions of equation (6) at  hand it is possible to make an 
approximate estimate of Fl at high values of pUu/r, from the experimental results. 
A plot is prepared of <c against 6' and lines of constant < are marked upon it. 
Figure 7 shows part of such a plot. Now, if F2 is assumed to be given by equation 
(la), and Fl = 1/6, then the experimental value of <r is given using equation 
(16). The experimental value of 6' is calculated by equation (17), and each experi- 
mental point can be located upon figure 7. From this figure, 6 can be interpolated 
and the 'true' value of m calculated. It must be remembered, however, that 
F2 has been assumed so that, quite apart from the crowding of <-lines at  high 6, 
errors must arise due to the inaccuracy of this function. Note that F2 only appears 
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in cc, and that the experimental value of this product is small as p U / a  becomes 
of order unity (the experimental points group near the y-axis). Therefore, the 
error in determining < is small for reasonably high values of pU/rr. 

In  figure 2 the experimental values of m, so determined, are compared with the 
assumed :€unction. Only points for 19 < 10” are plotted. At high ,uU/cr, the results 
seem to display asymptotic behaviour, but the asymptote is possibly somewhat 
greater than 0.4. Fl is nevertheless a good approximation. At lower values of 
p U / a  the scatter of results becomes more pronounced, because the experimental 
results become less and less sensitive to P1. Within the limitations of the measured 
quantities, the agreement can be considered as quite acceptable. 

4. Visual comparison with real adhesives in peeling 
A characteristic feature of the meniscus formed when a viscous fluid separates 

between two diverging surfaces is the formation of ‘webs’ of fluid extending 
behind the leading edge of the meniscus ‘fingers’. The appearance and form of 
these webs is observed to be dependent upon the angle of divergence of the 
surfaces and also upon ,uU/cr. Although their existence was known previously, 
Pearson’s analysis (1960) to find the most unstable wavelength of lateral dis- 
turbances to the meniscus, and to relate it to experiments on spreading (one 
surface only in motion) of viscous liquids, was the first attempt at a rational 
description of the webs. Taylor (1963) publishes some photographs of webs pro- 
duced in a similar physical situation, and Pitts & Greiller (1961) also comment 
on the ribbed appearance of liquid films rolled between the nip of adjacent 
counter-rotating cylinders. The same webbed appearance of the meniscus was 
noted in the present experiments on separation peeling. Figure 8 (plate 1) shows 
some typical examples of the form taken by the meniscus at  values of p U / a  
corresponding with the approach of m to its asymptotic limit. 

It is of interest to compare the present experimental observations with the 
appearance of the line of rupture in the peeling of ordinary commercially 
available impermeable pressure-sensitive tapes. 

Figure 9 (plate 2) reproduces photographs of the meniscus formed using tape 
kindly provided by the Minnesota Mining and Manufacturing Co. Ltd., having 
what was described as an ‘acrylate adhesive, adhesion level 30 unitslin.’ The 
two sticky surfaces were rolled together, care being taken wherever possible 
to avoid the trapping of air bubbles. They were then peeled apart in a small 
spring jig. In  the first photograph, (I), peeling had just commenced and fingering 
is seen to be quite regular. The increase in peeling angle resulted in the shortening 
of the finger pattern (11). As the peeling progressed the meniscus approached small 
defects in the layer which resulted in the growth of cavities ahead of the fingers so 
that the regular pattern was lost (111). The occasional forking of webs is similar 
to that observed with the viscous-liquid experiments, and arises when the ad- 
vancement of one air finger is inhibited by the more rapid advancement of the 
fingers adjacent to it. The behaviour is similar to that observed by Saffman & 
Taylor (1958) in a Hele-Shaw cell. As might be expected, the forking is inhibited 
by an increase in peeling angle. 
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Two other kinds of adhesive tape displayed a similar rupture-line behaviour : 
because of the superior uniformity of the adhesive layer, the former tape was 
preferred for photographic purposes. 

Notwithstanding the apparent close similarity between the zone of rupture 
with Newtonian liquids and with practical adhesives, there is little ground for 
supposing that the real adhesives examined behave in all relevant respects as 
normal liquids. While some types of adhesive backing are known to exhibit an 
almost linear relationship between peeling rate and peeling force per unit 
width, which on the basis of the models presented would be reasonable evidence 
of ‘Newtonian’-viscosity-dominated behaviour, such behaviour is the exception 
rather than the rule. Kaelble (1960) and Busse, Lambert & Verdery (1946), for 
example, give experimental results of peeling tests a t  high peeling angles in 
which some of the adhesives tested showed almost linear force/rate, but in most 
cases the relationship is found to approximate to a power one, of exponent greater 
than unity. However, such tests cannot be compared meaningfully with the pre- 
sent ones since they involve very high peeling angles, for which not only are the 
approximations of the present analysis no longer valid, but the effects of strip 
stiffness would almost certainly have influenced the results. Furthermore, these 
tests did not specifically distinguish the states in which the adhesive separated 
cleanly from one of the surfaces, and those in which the adhesive remained 
attached to both after rupture. The present analysis can justifiably be related only 
to  the second case. 

5. Concluding remarks 
It appears that a Newtonian viscous adhesive layer, in peeling, can be de- 

scribed successfully by means of a simple Poiseuille model of behaviour, pro- 
vided that the layer remains intact ahead of the line of rupture and that the 
peeling angle is small. The description relies upon a prediction of the significance 
of the parameter p U / a  in defining the ratio of the thickness of the layer far 
upstream of rupture to the thickness at the rupture line. Within the experi- 
mental limitations, the prediction is confirmed, demonstrating that at  low values 
of the peeling velocity U the relationship between peeling force T per unit width 
and peeling angle 6 depends upon surface tension r, but that a well-defined 
limiting relationship between p U / r  and 6 is approached; as CT becomes insignifi- 
cant U is proportional to T for a given 6. 

This result is analogous to the experimentally observed existence of an 
asymptotic limit to the proportion of liquid remaining after the evacuation of a 
two- or three-dimensional viscous-liquid-filled passage by a penetrating cavity 
or bubble, a situation which finds application in other cases of practical interest, 
as in cavitating lubrication and in applying surface coatings. 

It is noted that the physical appearance of the zone of rupture of commercially 
available impermeable pressure-sensitive tapes in peeling is similar to that 
arising in the present experiments, provided that the adhesive remains attached 
to the tape and is unflawed ahead of the rupture line. The characteristic instability 
of the free surface gives rise to the formation of webs of adhesive separated by 
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FIGURE 8. Meniscus appearance-viscous liquid. Peeling advancrs downwards. 
p = 73 poise, cr = 33.6 dyne/cm. 
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FLGURE 9. Peeling of ‘ Acrylatc’ adhesive tap?. 
Pcding advances downwards. 
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penetrating air fingers. This similarity cannot however be considered as evidence 
of any detailed applicability of the present results to real adhesives in peeling. 

One of us (A.D.McE.) expresses his gratitude for assistance given by an 
Australian C.S.I.R.O. Studentship and later by an Australian Public Service 
Boa,rd Scholarship. 
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